Generalized approach to matched filtering using neural networks
نویسندگان
چکیده
Gravitational wave science is a pioneering field with rapidly evolving data analysis methodology currently assimilating and inventing deep learning techniques. The bulk of the sophisticated flagship searches rely on time-tested matched filtering principle within their core. In this paper, we make key observation relationship between emerging traditional techniques: formally equivalent to particular neural network. This means that network can be constructed analytically exactly implement filtering, further trained or boosted additional complexity for improved performance. Moreover, show proposed architecture outperform both without knowledge prior parameter distribution. When given, approach statistically optimal We also propose investigate two different architectures MNet-Shallow MNet-Deep, which at initialization data. has simpler structure, while MNet-Deep more flexible deal wider range distributions. Our theoretical findings are corroborated by experiments using real LIGO synthetic injections, where our methods significantly false positive rates above $5\times 10^{-3}\%$. fundamental equivalence networks allows us define "complexity standard candle" characterize relative approaches gravitational signal in common framework. Finally, results suggest new perspectives role detection.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Using neural networks to predict road roughness
When a vehicle travels on a road, different parts of vehicle vibrate because of road roughness. This paper proposes a method to predict road roughness based on vertical acceleration using neural networks. To this end, first, the suspension system and road roughness are expressed mathematically. Then, the suspension system model will identified using neural networks. The results of this step sho...
متن کاملAn Approach to Collaborative Filtering by Artmap Neural Networks
Recommender systems are now widely used in e-commerce applications to assist customers to find relevant products from the many that are frequently available. Collaborative filtering (CF) is a key component of many of these systems, in which recommendations are made to users based on the opinions of similar users in a system. This paper presents a model-based approach to CF by using supervised A...
متن کاملAn algorithmic approach to adaptive state filtering using recurrent neural networks
Practical algorithms are presented for adaptive state filtering in nonlinear dynamic systems when the state equations are unknown. The state equations are constructively approximated using neural networks. The algorithms presented are based on the two-step prediction-update approach of the Kalman filter. The proposed algorithms make minimal assumptions regarding the underlying nonlinear dynamic...
متن کاملUsing Neural Networks with Limited Data to Estimate Manufacturing Cost
Neural networks were used to estimate the cost of jet engine components, specifically shafts and cases. The neural network process was compared with results produced by the current conventional cost estimation software and linear regression methods. Due to the complex nature of the parts and the limited amount of information available, data expansion techniques such as doubling-data and data-cr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical review
سال: 2022
ISSN: ['0556-2813', '1538-4497', '1089-490X']
DOI: https://doi.org/10.1103/physrevd.105.043006